Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Immunol ; 25(5): 802-819, 2024 May.
Article in English | MEDLINE | ID: mdl-38684922

ABSTRACT

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Subject(s)
Macrophages , Neoplasms , Sepsis , Humans , Sepsis/immunology , Macrophages/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Male , Receptors, CXCR6/metabolism , Animals , T-Lymphocytes/immunology , Receptors, CCR2/metabolism , Middle Aged , Mice , Aged , Chemokines/metabolism , Adult
2.
Clin Cancer Res ; 28(12): 2555-2566, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35421231

ABSTRACT

PURPOSE: Immunotherapy for hepatocellular carcinoma (HCC) shows considerable promise in improving clinical outcomes. HepaVac-101 represents a single-arm, first-in-human phase I/II multicenter cancer vaccine trial for HCC (NCT03203005). It combines multipeptide antigens (IMA970A) with the TLR7/8/RIG I agonist CV8102. IMA970A includes 5 HLA-A*24 and 7 HLA-A*02 as well as 4 HLA-DR restricted peptides selected after mass spectrometric identification in human HCC tissues or cell lines. CV8102 is an RNA-based immunostimulator inducing a balanced Th1/Th2 immune response. PATIENTS AND METHODS: A total of 82 patients with very early- to intermediate-stage HCCs were enrolled and screened for suitable HLA haplotypes and 22 put on study treatment. This consisted in a single infusion of low-dose cyclophosphamide followed by nine intradermal coadministrations of IMA970A and CV8102. Only patients with no disease relapse after standard-of-care treatments were vaccinated. The primary endpoints of the HepaVac-101 clinical trial were safety, tolerability, and antigen-specific T-cell responses. Secondary or exploratory endpoints included additional immunologic parameters and survival endpoints. RESULTS: The vaccination showed a good safety profile. Transient mild-to-moderate injection-site reactions were the most frequent IMA970A/CV8102-related side effects. Immune responses against ≥1 vaccinated HLA class I tumor-associated peptide (TAA) and ≥1 vaccinated HLA class II TAA were respectively induced in 37% and 53% of the vaccinees. CONCLUSIONS: Immunotherapy may provide a great improvement in treatment options for HCC. HepaVac-101 is a first-in-human clinical vaccine trial with multiple novel HLA class I- and class II-restricted TAAs against HCC. The results are initial evidence for the safety and immunogenicity of the vaccine. Further clinical evaluations are warranted.


Subject(s)
Cancer Vaccines , Carcinoma, Hepatocellular , Liver Neoplasms , Adjuvants, Immunologic , Cancer Vaccines/adverse effects , Carcinoma, Hepatocellular/drug therapy , HLA-A Antigens , Humans , Immunotherapy/methods , Liver Neoplasms/drug therapy , Peptides
3.
Am J Respir Crit Care Med ; 206(3): 295-310, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35486851

ABSTRACT

Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.


Subject(s)
Brain Injuries , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 1, Human/genetics , Humans , Leukocytes, Mononuclear , Monocytes
4.
J Infect Dis ; 224(12): 2160-2169, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34019653

ABSTRACT

BACKGROUND: Septic shock remains a major cause of death that can be complicated by long-term impairment in immune function. Among regulatory T (Treg) cells, the tumor necrosis factor receptor 2 positive (TNFR2pos) Treg-cell subset endorses significant immunosuppressive functions in human tumors and a sepsis mouse model but has not been investigated during septic shock in humans. METHODS: We prospectively enrolled patients with septic shock hospitalized in intensive care units (ICU). We performed immunophenotyping and functional tests of CD4+ T cells, Treg cells, and TNFR2pos Treg cells on blood samples collected 1, 4, and 7 days after admission to ICU. RESULTS: We investigated 10 patients with septic shock compared to 10 healthy controls. Although the proportions of circulating Treg cells and TNFR2pos Treg-cell subsets were not increased, their CTLA4 expression and suppressive functions in vitro were increased at 4 days of septic shock. Peripheral blood mononuclear cells from healthy donors cultured with serum from septic shock patients had increased CTLA4 expression in TNFR2pos Treg cells compared to TNFR2neg Treg cells. CONCLUSIONS: In patients with septic shock, CTLA4 expression and suppressive function were increased in circulating TNFR2pos Treg cells. We identify TNFR2pos Treg cells as a potential attractive target for therapeutic intervention.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Sepsis/metabolism , Shock, Septic/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Immunosuppression Therapy , Leukocytes, Mononuclear , Mice
5.
Infect Immun ; 88(12)2020 11 16.
Article in English | MEDLINE | ID: mdl-32928966

ABSTRACT

Natural killer (NK) cells play a key role in both antibacterial and antitumor immunity. Pseudomonas aeruginosa infection has already been reported to alter NK cell functions. We studied in vitro the effect of P. aeruginosa on NK cell cytotoxic response (CD107a membrane expression) to a lymphoma cell line. Through positive and negative cell sorting and adoptive transfer, we determined the influence of monocytes, lymphocytes, and regulatory T cells (Treg) on NK cell function during P. aeruginosa infection. We also studied the role of the activating receptor natural killer group 2D (NKG2D) in NK cell response to B221. We determined that P. aeruginosa significantly altered both cytotoxic response to B221 and NKG2D expression on NK cells in a Treg-dependent manner and that the NKG2D receptor was involved in NK cell cytotoxic response to B221. Our results also suggested that during P. aeruginosa infection, monocytes participated in Treg-mediated NK cell alteration. In conclusion, P. aeruginosa infection impairs NK cell cytotoxicity and alters antitumor immunity. These results highlight the strong interaction between bacterial infection and immunity against cancer.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , T-Lymphocytes, Regulatory/immunology , CD3 Complex/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytotoxicity Tests, Immunologic , Humans , Leukocytes, Mononuclear , Lipopolysaccharide Receptors/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Monocytes/immunology , Pseudomonas Infections/metabolism , Signaling Lymphocytic Activation Molecule Family/metabolism
6.
J Infect Dis ; 222(7): 1222-1234, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697326

ABSTRACT

Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.


Subject(s)
CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Sepsis/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , Cells, Cultured , Female , Humans , Immunosuppression Therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type II/deficiency , Sepsis/microbiology , Staphylococcus aureus , T-Lymphocytes, Regulatory/cytology
8.
Nat Immunol ; 21(6): 636-648, 2020 06.
Article in English | MEDLINE | ID: mdl-32424365

ABSTRACT

Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.


Subject(s)
Epigenesis, Genetic , Inflammation/etiology , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/metabolism , Animals , Biomarkers , Cellular Reprogramming , Cytokines/metabolism , Humans , Immune Tolerance , Immunophenotyping , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages, Alveolar/immunology , Mice , Monocytes/immunology , Monocytes/metabolism , Phagocytosis/immunology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Pain ; 161(5): 1109-1123, 2020 05.
Article in English | MEDLINE | ID: mdl-31977937

ABSTRACT

Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.


Subject(s)
Hyperalgesia , Animals , Ganglia, Spinal , JNK Mitogen-Activated Protein Kinases , MAP Kinase Signaling System , Mice , Nerve Growth Factor/genetics , Receptor, trkA/genetics , Receptor, trkC , p38 Mitogen-Activated Protein Kinases
11.
Brain ; 140(10): 2586-2596, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28969390

ABSTRACT

Dominant optic atrophy is a blinding disease due to the degeneration of the retinal ganglion cells, the axons of which form the optic nerves. In most cases, the disease is caused by mutations in OPA1, a gene encoding a mitochondrial large GTPase involved in cristae structure and mitochondrial network fusion. Using exome sequencing, we identified dominant mutations in DNM1L on chromosome 12p11.21 in three large families with isolated optic atrophy, including the two families that defined the OPA5 locus on chromosome 19q12.1-13.1, the existence of which is denied by the present study. Analyses of patient fibroblasts revealed physiological abundance and homo-polymerization of DNM1L, forming aggregates in the cytoplasm and on highly tubulated mitochondrial network, whereas neither structural difference of the peroxisome network, nor alteration of the respiratory machinery was noticed. Fluorescence microscopy of wild-type mouse retina disclosed a strong DNM1L expression in the ganglion cell layer and axons, and comparison between 3-month-old wild-type and Dnm1l+/- mice revealed increased mitochondrial length in retinal ganglion cell soma and axon, but no degeneration. Thus, our results disclose that in addition to OPA1, OPA3, MFN2, AFG3L2 and SPG7, dominant mutations in DNM1L jeopardize the integrity of the optic nerve, suggesting that alterations of the opposing forces governing mitochondrial fusion and fission, similarly affect retinal ganglion cell survival.


Subject(s)
GTP Phosphohydrolases/genetics , Microtubule-Associated Proteins/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Optic Atrophy/genetics , Adolescent , Adult , Animals , Cells, Cultured , Child , Dynamins , Family Health , Female , Fibroblasts/pathology , Fibroblasts/ultrastructure , Humans , Male , Mice , Microscopy, Electron, Transmission , Middle Aged , Oxygen Consumption/genetics , Peroxisomes/pathology , Retina/pathology , Retina/ultrastructure
12.
Invest Ophthalmol Vis Sci ; 58(2): 812-820, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28159969

ABSTRACT

Purpose: Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Methods: Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Results: Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Conclusions: Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.


Subject(s)
GTP Phosphohydrolases/genetics , Metabolome/physiology , Optic Atrophy, Autosomal Dominant/metabolism , Optic Nerve/metabolism , Animals , Brain/metabolism , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/metabolism , Liver/metabolism , Metabolomics/methods , Mice, Transgenic , Microscopy, Electron , Muscle, Skeletal/metabolism , Myocardium/metabolism , Optic Atrophy, Autosomal Dominant/genetics , Optic Nerve/ultrastructure , Retina/metabolism
13.
PLoS One ; 9(2): e87210, 2014.
Article in English | MEDLINE | ID: mdl-24520328

ABSTRACT

BACKGROUND: Anti-GD2 antibody is a proven therapy for GD2-positive neuroblastoma. Monoclonal antibodies against GD2, such as chimeric mAb ch14.18, have become benchmarks for neuroblastoma therapies. Pain, however, can limit immunotherapy with anti-GD2 therapeutic antibodies like ch14.18. This adverse effect is attributed to acute inflammation via complement activation on GD2-expressing nerves. Thus, new strategies are needed for the development of treatment intensification strategies to improve the outcome of these patients. METHODOLOGY/PRINCIPAL FINDINGS: We established the mouse-human chimeric antibody c.8B6 specific to OAcGD2 in order to reduce potential immunogenicity in patients and to fill the need for a selective agent that can kill neuroblastoma cells without inducing adverse neurological side effects caused by anti-GD2 antibody immunotherapy. We further analyzed some of its functional properties compared with anti-GD2 ch14.18 therapeutic antibody. With the exception of allodynic activity, we found that antibody c.8B6 shares the same anti-neuroblastoma attributes as therapeutic ch14.18 anti-GD2 mAb when tested in cell-based assay and in vivo in an animal model. CONCLUSION/SIGNIFICANCE: The absence of OAcGD2 expression on nerve fibers and the lack of allodynic properties of c.8B6-which are believed to play a major role in mediating anti-GD2 mAb dose-limiting side effects-provide an important rationale for the clinical application of c.8B6 in patients with high-risk neuroblastoma.


Subject(s)
Antibodies, Monoclonal/immunology , Gangliosides/immunology , Hyperalgesia/chemically induced , Neuroblastoma/immunology , Neuroblastoma/therapy , Acetylation , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibody Specificity/immunology , Flow Cytometry , Humans , Hyperalgesia/pathology , Injections, Intravenous , Mice , Neuroblastoma/pathology , Protein Binding , Rats , Rats, Sprague-Dawley
14.
Oncoimmunology ; 2(4): e23700, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23734323

ABSTRACT

Current antiangiogenic immunotherapeutic strategies mainly focus on the blockade of circulating cytokines or receptors that are overexpressed by endothelial cells. We proposed globotriaosylceramide (Gb3) as a viable alternative target for antiangiogenic therapies. In this setting, we developed an anti-Gb3 antibody and validated its therapeutic efficacy in metastatic tumor models.

15.
PLoS One ; 7(11): e45423, 2012.
Article in English | MEDLINE | ID: mdl-23189121

ABSTRACT

Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antigens, Tumor-Associated, Carbohydrate/immunology , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/immunology , Neovascularization, Pathologic/immunology , Angiogenesis Inhibitors/administration & dosage , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, Tumor-Associated, Carbohydrate/metabolism , Antineoplastic Agents/administration & dosage , Cell Line , Cell Line, Tumor , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Neoplasm Metastasis , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Neuroblastoma/drug therapy , Neuroblastoma/immunology , Neuroblastoma/pathology , Tumor Burden/drug effects
16.
PLoS One ; 6(9): e25220, 2011.
Article in English | MEDLINE | ID: mdl-21966461

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAb) against GD2 ganglioside have been shown to be effective for the treatment of neuroblastoma. Beneficial actions are, however, associated with generalized pain due to the binding of anti- GD2 mAbs to peripheral nerve fibers followed by complement activation. Neuroblastoma cells that express GD2 also express its O-acetyl derivative, O-acetyl- GD2 ganglioside (OAcGD2). Hence, we investigated the distribution of OAcGD2 in human tissues using mAb 8B6 to study the cross-reactivity of mAb 8B6 with human tissues. METHODOLOGY/PRINCIPAL FINDINGS: The distribution of OAcGD2 was performed in normal and malignant tissues using an immunoperoxydase technique. Anti-tumor properties of mAb 8B6 were studied in vitro and in vivo in a transplanted tumor model in mice. We found that OAcGD2 is not expressed by peripheral nerve fibers. Furthermore, we demonstrated that mAb 8B6 was very effective in the in vitro and in vivo suppression of the growth of tumor cells. Importantly, mAb 8B6 anti-tumor efficacy was comparable to that of mAb 14G2a specific to GD2. CONCLUSION/SIGNIFICANCE: Development of therapeutic antibodies specific to OAcGD2 may offer treatment options with reduced adverse side effects, thereby allowing dose escalation of antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Gangliosides/immunology , Peripheral Nervous System/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , In Vitro Techniques , Neuroblastoma/metabolism , Peripheral Nervous System/pathology
17.
PLoS One ; 5(9): e12728, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20856865

ABSTRACT

BACKGROUND: The presence of Lewy bodies and Lewy neurites (LN) has been demonstrated in the enteric nervous system (ENS) of Parkinson's disease (PD) patients. The aims of the present research were to use routine colonoscopy biopsies (1) to analyze, in depth, enteric pathology throughout the colonic submucosal plexus (SMP), and (2) to correlate the pathological burden with neurological and gastrointestinal (GI) symptoms. METHODOLOGY/PRINCIPAL FINDINGS: A total of 10 control and 29 PD patients divided into 3 groups according to disease duration were included. PD and GI symptoms were assessed using the Unified Parkinson's Disease Rating Scale part III and the Rome III questionnaire, respectively. Four biopsies were taken from the ascending and descending colon during the course of a total colonoscopy. Immunohistochemical analysis was performed using antibodies against phosphorylated alpha-synuclein, neurofilaments NF 220 kDa (NF) and tyrosine hydroxylase (TH). The density of LN, labeled by anti-phosphorylated alpha-synuclein antibodies, was evaluated using a quantitative rating score. Lewy pathology was apparent in the colonic biopsies from 21 patients and in none of the controls. A decreased number of NF-immunoreactive neurons per ganglion was observed in the SMP of PD patients compared to controls. The amount of LN in the ENS was inversely correlated with neuronal count and positively correlated with levodopa-unresponsive features and constipation. CONCLUSION/SIGNIFICANCE: Analysis of the ENS by routine colonoscopy biopsies is a useful tool for pre-mortem neuropathological diagnosis of PD, and also provides insight into the progression of motor and non-motor symptoms.


Subject(s)
Colon/innervation , Colon/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Adult , Aged , Biopsy , Colon/metabolism , Colonoscopy , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Female , Humans , Lewy Bodies/metabolism , Male , Middle Aged , Parkinson Disease/metabolism
18.
Eur J Neurosci ; 30(5): 735-41, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19712093

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease. It has been classically considered that the pathological hallmarks of Parkinson's disease, namely Lewy bodies and Lewy neurites, affect primarily the substantia nigra. Nevertheless, it has become increasingly evident in recent years that Parkinson's disease is a multicentric neurodegenerative process that affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Remarkably, recent reports have shown that the lesions in the enteric nervous system occurred at a very early stage of the disease, even before the involvement of the central nervous system. This led to the postulate that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent a route of entry for a putative environmental factor to initiate the pathological process (Braak's hypothesis). Besides their putative role in the spreading of the pathological process, it has also been suggested that the pathological alterations within the enteric nervous system could be involved in the gastrointestinal dysfunction frequently encountered by parkinsonian patients. The scope of the present article is to review the available studies on the enteric nervous system in Parkinson's disease patients and in animal models of the disease. We further discuss the strategies that will help in our understanding of the roles of the enteric nervous system, both in the pathophysiology of the disease and in the pathophysiology of the gastrointestinal symptoms.


Subject(s)
Enteric Nervous System/pathology , Neurons/pathology , Parkinson Disease/pathology , Animals , Central Nervous System/pathology , Humans , Neural Pathways/pathology
19.
Biochem Biophys Res Commun ; 382(3): 577-82, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19302981

ABSTRACT

Neurons of enteric nervous system (ENS) regulate intestinal epithelial cells (IEC) functions but whether IEC can impact upon the neurochemical coding and survival of enteric neurons remain unknown. Neuro-epithelial interactions were studied using a coculture model composed of IEC lines and primary culture of rat ENS or human neuroblastoma cells (SH-SY5Y). Neurochemical coding of enteric neurons was analysed by immunohistochemistry and quantitative PCR. Neuroprotective effects of IEC were tested by measuring neuron specific enolase (NSE) release or cell permeability to 7-amino-actinomycin D (7-AAD). Following coculture with IEC, the percentage of VIP-immunoreactive (IR) neurons but not NOS-IR and VIP mRNA expression were significantly increased. IEC significantly reduced dopamine-induced NSE release and 7-AAD permeability in culture of ENS and SH-SY5Y, respectively. Finally, we showed that NGF had neuroprotective effects but reduced VIP expression in enteric neurons. In conclusion, our study identified a novel role for IEC in the regulation of enteric neuronal properties.


Subject(s)
Intestinal Mucosa/physiology , Intestines/innervation , Neuronal Plasticity , Neurons/physiology , Animals , Dactinomycin/analogs & derivatives , Dactinomycin/metabolism , Fluorescent Dyes/metabolism , Humans , Intestines/cytology , Intestines/physiology , Neurons/enzymology , Phosphopyruvate Hydratase/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...